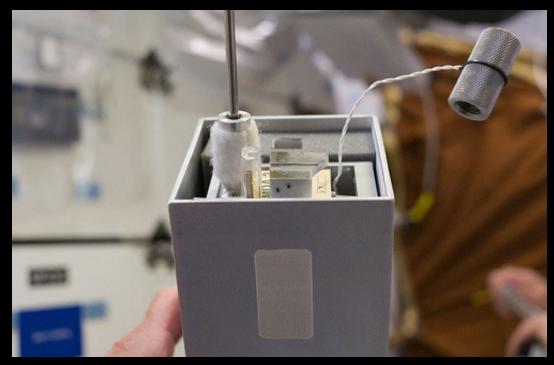
HOW TO BUILD A NANORACKS PAYLOAD: NANOLABS



WELCOME TO NANORACKS

We started NanoRacks to create a commercial environment for economical space utilization. It is vital to have a cost-efficient means to utilize the space environment. We utilize plug and play, miniaturization, standardization and commercial practices to assure space operations for today's challenges.

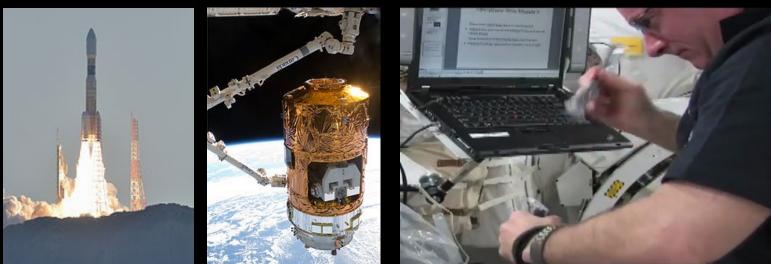
EDUCATIONAL OVERVIEW

NanoRacks fully supports student-conducted experiments that focus on microgravity as a variable. Experiments usually fall into one of these three categories:

•Technology Demonstration (Air, Water, Surface Monitoring, Radiation Measurement, Communication & Navigation, Satellite Technologies, Spacecraft Materials, Robotics & Imaging, Orbital Environment, Avionics & Software)

Biology and Biotechnology (Microbiology/Cellular/Other, Animal Biology, Plant Biology)
Physical Sciences (Combustion Science, Material Science) and Astronomy.

•To learn more about our educational opportunities, please visit www.DreamUp.org, the Educational Arm of NanoRacks



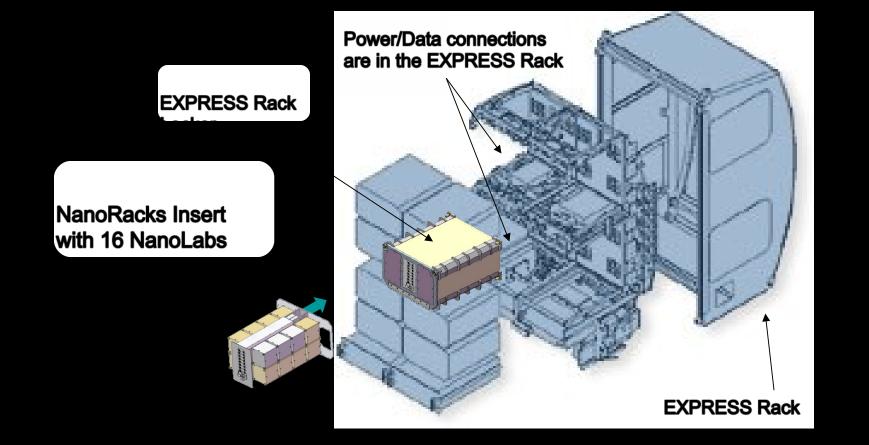
NANORACKS OPERATIONS

Launch

On-Orbit Operations

Return

Landing

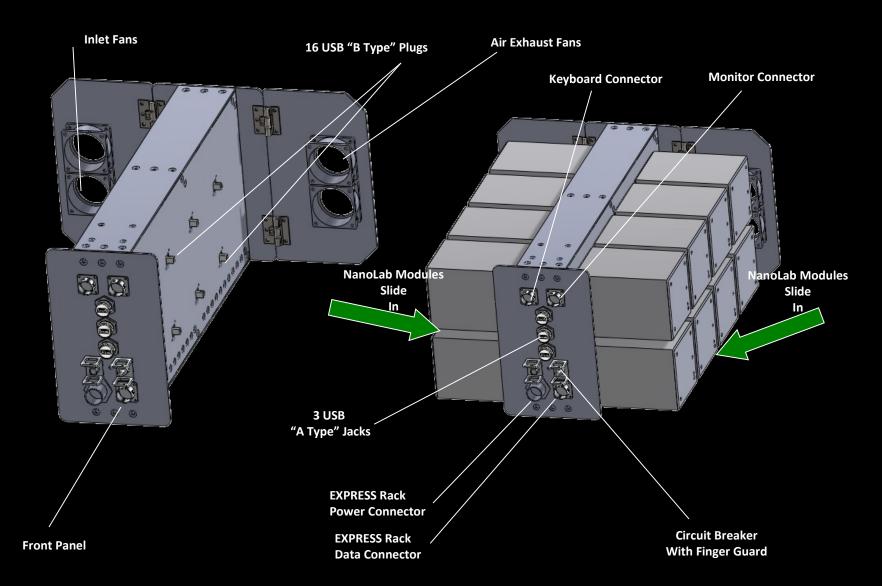

Retrieval

Receive At NanoRacks

EXPRESS RACK OVERVIEW

what is a NanoLab?

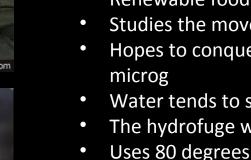
- A NanoLab is a *Module* that houses a science experiment to be run on the station!
- Interface NanoRacks Platforms 1&2
- Generally 1.5U (10x10x15cm) in size
- Can be as large as 4x2U
- Powered through USB 2.0 5V
- "Plug-n-Play" plugged in by an astronaut and they're ready to go!
- Can be operated external to the rack for an additional fee.



NANORACKS PLATFORM 1 / 2 OVERVIEW

More on "Plug-n-Play" Nanolabs

- Not powered during flight to the ISS
- Standard crew operations are stow/de-stow and power on/off
- USB 2.0 port is flush to Module wall
- No greater than 1kg/U in mass
- No protrusions or sharp edges
- Magnets, batteries, electronics, live science, and other systems are approved on individual bases
- Data Transfer and Down-mass capabilities available

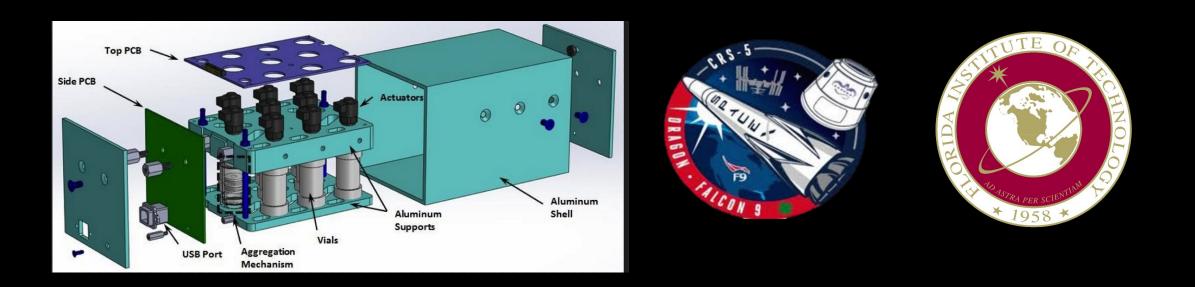

HYDROFUGE PERSONAL PLANT GROWTH CHAMBER

Warren Tech at Lakewood High School, Lakewood Colorado

- Renewable food source
- Studies the movement of liquid
- Hopes to conquer the complexity of fluids in microg
- Water tends to smother the roots of plants
- The hydrofuge wicks the water back out
- Uses 80 degrees wetting valve that attracts water
- Lights
- Camera

MakeAGIE.com

- Nessi board
- Hopes to keep roots perfectly balanced
- In part uses a translucent 3-d material



SELF ASSEMBLY IN BIOLOGY AND THE ORIGIN OF LIFE (SABOL)

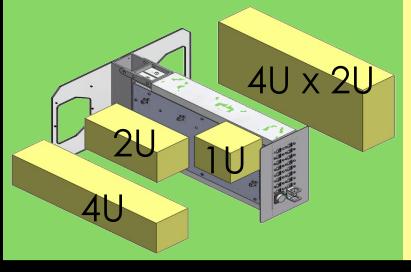
by Florida Institute of Technology

Study of self-organizing processes such as protein aggregation and Amyloid fiber formation greatly benefits from experiments conducted in the weightless environment afforded by the International Space Station (ISS)

NANOROCKS

by University Central Florida

- Physics project
- Clever Positioning of Camera and mirror
- Springs
- Phase change materials give new data over time
- Usb-powered
- Microcontroller board
- Simulates the formation of how planets and moons formed long ago.
- Study can't really be replicated anywhere else but microgravity.



NanoLab Design Process

Step 1: Know your design space

Volume

1U = 10cm x 10cm x 10cm 2U = 20cm x 10cm x 10cm 3U = 30cm x 10cm x 10cm 4U = 40cm x 10cm x 10cm 2x2U = 20cm x 20 cm x 10 cm 2x3U = 20cm x 30cm x 10cm 2x4U = 20cm x 40cm x 10cm

Mass	Power
1U = 1kg	1U = 2W max (5VDC, 400mA
2U = 2kg	2U = 4W max (5VDC, 800mA
Jp to	Up to
3U = 8kg	8U = 16W max (5VDC, 3.2A)

Data

•Each 1U has a USB Type B female connector that supplies 5VDC, 400 mA and USB data connectivity

• Mission based on 30 days

- •Collected data is transferred to a laptop computer in near real time
- •Commanding files can be transferred from the ground to laptop to payload

NanoLab Design Process

Step 2: Come up with a payload for your NanoLab

Space Research Areas Microgravity •Fluid Science/Fluid Handling •Soil Mechanics Science •Metal Solidification/Alloys •Vapor/Liquid Phase •Combustion Science	Keep the Mass Low Box is aluminum	Limited Crew Interaction Ambient Temperatures
 Life Sciences Plant Growth Microbiology Small animal/insect research Crystal Growth Protein Crystal Growth Astronaut Tools Low gravity research 	USB Dev • Microcon • Flash mer Sensors • Camera • Spectroph • Micropho • Acceleror	troller mory Actuators •Magnetic Motor •Solenoid •Piezoelectric •Thermal •Capacitive
Space Environment•Radiation measurement•RF studies•Magnetic fieldsSpacecraft Hardware Qualification•In-space testing of components•In-space testing of systems	• Gyroscop • Temperat • Humidity S • Air Flow Se • Pressure S • Capacita • RF Sensor • Resistance • Magnetic	e e Flag indicators Flag indicators Flag indicators Galvanometer Galvanometer Galvanometer • Valves • Heater • Peltier cooler • Peltier cooler

For further details on the form factor and the dimension options, power requirements, and other details for NanoLabs, please refer to the NanoLab Interface Control Document.

This can be downloaded at: http://nanoracks.com/wp-content/uploads/Current_edition_of_Interface_Document_for_NanoRacks_Internal_Pla

Are you working on an educational project? www.DreamUp.org , the educational arm of NanoRacks, is your place to get started.

Commercial? Government? Email us at info@nanoracks.com to begin your journey.

NANORACKS

